首页> 外文OA文献 >Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework
【2h】

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

机译:粘结带模型:非局部隐式不连续Galerkin框架中裂纹过渡破坏的三轴依赖性粘结模型

摘要

Numerical modelling of the complete ductile failure process is still a challenge. On the one hand, continuous approaches, described by damage models, succeed in the initial diffuse damage stage but are still unable to represent physical discontinuities. On the other hand, discontinuous approaches, such as the cohesive zone models, are able to represent the crack propagation behaviour. They are suited for local damaging processes as crack initiation and propagation, and so, fail in diffuse damage prediction of ductile materials. Moreover, they do not usually capture triaxiality effects, mandatory for accurate ductile failure simulations. To describe the ductile failure process, the numerical scheme proposed here combines both approaches [1] in order to beneficiate from their respective advantages: a non-local damage model combined with an extrinsic cohesive law in a discontinuous Galerkin finite element framework. An application example of this scheme is shown on the attached figure. The initial diffuse damage stage is modelled by an implicit nonlocal damage model as suggested by [2]. Upon damage to crack transition, a cohesive band [3] is used to introduce in-plane stretch effects inside the cohesive law or in other words, a triaxiality-dependent behaviour. Indeed, these in-plane strains play an important role during the ductile failure process and have to be considered. Concretely, when crack appears in the last failure stage, all the damaging process is assumed to occur inside a thin band ahead of the crack surface. Thanks to the small but finite numerical band thickness, the strains inside this band can be obtained from the in-plane strains and from the cohesive jump.Then, the stress-state inside the band and the cohesive traction forces on the crack lips are deduced from the underlying continuum damage model. The band thickness is not a new material parameter but is computed to ensure the energetic consistency during the transition.[1] Wu L, Becker G, Noels L. Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework. Comput. Methods Appl. Mech. Eng. 279 (2014): 379–409[2] Peerlings R., de Borst R., Brekelmans W., Ayyapureddi S. Gradient-enhanced damage for quasi-brittle materials, Int. J. for Num. Methods in Eng. 39 (1996): 3391-3403[3] Remmers J. J. C., de Borst R., Verhoosel C. V., Needleman A. The cohesive band model: a cohesive surface formulation with stress triaxiality. Int. J. Fract. 181 (2013): 177–188
机译:完整的延性破坏过程的数值模型仍然是一个挑战。一方面,由损伤模型描述的连续方法在初始弥散损伤阶段成功,但仍不能表示物理上的不连续性。另一方面,不连续的方法(如内聚区模型)能够表示裂纹扩展行为。它们适用于局部破坏过程,例如裂纹的萌生和扩展,因此在延性材料的弥散损伤预测中失败。此外,它们通常不捕获三轴效应,这对于精确的延性破坏模拟是必不可少的。为了描述延性失效过程,此处提出的数值方案结合了两种方法[1],以便从它们各自的优点中受益:非局部损伤模型与非连续内聚定律在不连续的Galerkin有限元框架中结合。该方案的一个应用示例如附图所示。初始弥散损伤阶段由隐式非局部损伤模型建模[2]。在破坏裂纹过渡时,使用粘结带[3]在粘结定律内部引入面内拉伸效应,换句话说,是依赖于三轴性的行为。实际上,这些平面应变在延性破坏过程中起着重要作用,必须加以考虑。具体而言,当在最后一个破坏阶段出现裂纹时,所有破坏过程都假定发生在裂纹表面之前的细带内。由于带的数值很小但有限,因此可以从面内应变和内聚跃变获得该带内的应变,然后推导带内的应力状态和裂纹唇上的内聚牵引力从基础连续损伤模型中得出。带厚度不是新的材料参数,而是经过计算以确保过渡过程中的能量一致性。[1] Wu L,Becker G,Noels L.在耦合的非局部隐式不连续Galerkin /外部黏聚法则框架中对裂纹过渡的弹性损伤。计算方法应用。机甲。 279(2014):379–409 [2] Peerlings R.,de Borst R.,Brekelmans W.,Ayyapureddi S.准脆性材料的梯度增强损伤,国际J.工程方法。 39(1996):3391-3403 [3] Remmers J.J.C.,de Borst R.,Verhoosel C.V.,NeedlemanA。内聚带模型:具有应力三轴性的内聚表面配方。诠释J.分形181(2013):177–188

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号